Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Accepted manuscripts
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Geochemistry: Exploration, Environment, Analysis
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Geochemistry: Exploration, Environment, Analysis

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Accepted manuscripts
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

Characterization of altered mafic and ultramafic rocks using portable XRF geochemistry and portable Vis-NIR spectrometry

View ORCID ProfileCameron Adams, View ORCID ProfileMichael Dentith and Marco Fiorentini
Geochemistry: Exploration, Environment, Analysis, https://doi.org/10.1144/geochem2020-065
Cameron Adams
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, , Australia
  • Find this author on Google Scholar
  • Search for this author on this site
  • ORCID record for Cameron Adams
  • For correspondence: cameron.adams@research.uwa.edu.au
Michael Dentith
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, , Australia
  • Find this author on Google Scholar
  • Search for this author on this site
  • ORCID record for Michael Dentith
Marco Fiorentini
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, , Australia
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The accurate characterization of mafic and ultramafic rocks is a challenging but necessary task given the spatial and genetic relationship of mineralization with specific lithologies (e.g. komatiite hosted nickel-sulfides preferentially associated with cumulate-rich ultramafic rocks). Rock classification is further complicated as most mafic and ultramafic rocks have undergone varying degrees of alteration. The accuracy and reproducibility of characterization can be significantly improved by using portable energy dispersive X-ray Fluorescence (pXRF) chemical data with portable Visible and Near-Infrared (pVis-NIR) mineralogical data.

A new workflow using pXRF and pVis-NIR is presented and used to reliably characterize mafic and ultramafic rocks from the Yilgarn Craton, Western Australia. The workflow involves 6 steps:

  1. Mitigate and identify compound processing and closure issues. For example, we used a pXRF with helium flush to reliably and rapidly measure light elements and mitigate closure, i.e. problems related to data failing to sum to 100%.

  2. Identify and exclude geochemically heterogeneous samples. Heterogeneity may be unrelated to alteration and caused by veining or small-scale structure interleaving of different rock types. Geochemical heterogeneity was evaluated using skewness and kurtosis of SiO2 data.

  3. Relate rocks from similar magmatic, weathering and alteration events. This was achieved by interpreting data grouping of Vis-NIR ferric and ferrous iron data via a 852 nm/982 nm reflectance v. 651 nm/982 nm reflectance plot and the Ferrous Abundance Index. Unrepresentative data were omitted.

  4. Correct XRF iron data, and characterize lithology and alteration. Values ascribed to regions in the TAS (Total Alkali Silica) diagram were used to approximate FeO and Fe2O3. Subsequently, geochemical indices (e.g. Mg#) were used to characterize the alteration box plot.

  5. Characterize fractionation in detail. Fractionation variation diagrams were used to interpret fractionation, e.g. MgO v. Al2O3, Ca/Al v. Al2O3, Ni/Cr v. Ni/Ti, and MgO v. Cr.

  6. Identify and quantify talc alteration and serpentinization. This included the use of a new alteration plot (Mg# v. 1410 nmRAD/Albedo) to estimate serpentinization and identify relationships between serpentine, carbonate, chlorite and talc abundances.

The results and observations contained in this contribution have important implications for progressive technologies such as core logging platforms that are equipped with pXRF and pVis-NIR instruments.

Scientific editing by Scott Alan Wood

  • © 2021 The Author(s). Published by The Geological Society of London for GSL and AAG. All rights reserved

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email sales@geolsoc.org.uk

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact sales@geolsoc.org.uk

PreviousNext
Back to top

Current issue

Geochemistry: Exploration, Environment, Analysis: 21 (1)
  • Table of Contents
  • About the Cover
  • Index by author
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Characterization of altered mafic and ultramafic rocks using portable XRF geochemistry and portable Vis-NIR spectrometry

Cameron Adams, Michael Dentith and Marco Fiorentini
Geochemistry: Exploration, Environment, Analysis, 15 February 2021, https://doi.org/10.1144/geochem2020-065
Cameron Adams
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, , Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Cameron Adams
  • For correspondence: cameron.adams@research.uwa.edu.au
Michael Dentith
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, , Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael Dentith
Marco Fiorentini
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, , Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Characterization of altered mafic and ultramafic rocks using portable XRF geochemistry and portable Vis-NIR spectrometry

Cameron Adams, Michael Dentith and Marco Fiorentini
Geochemistry: Exploration, Environment, Analysis, https://doi.org/10.1144/geochem2020-065
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Geochemistry: Exploration, Environment, Analysis article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of altered mafic and ultramafic rocks using portable XRF geochemistry and portable Vis-NIR spectrometry
(Your Name) has forwarded a page to you from Geochemistry: Exploration, Environment, Analysis
(Your Name) thought you would be interested in this article in Geochemistry: Exploration, Environment, Analysis.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • Use of field-portable XRF in exploration of PGE-enriched zones in the Pilanesberg PGE deposit, Bushveld Complex, South Africa
  • Geochemical characteristics of rare earth elements (REEs) in soils developed on different parent materials, in the Baoshan area, Yunnan Province, Southwest China
  • Mineral control on the geochemistry of the Rock Canyon Creek REE-F-Ba deposit, British Columbia, Canada
Show more: Research article
  • Most read
  • Most cited
Loading
  • State-of-the-art analysis of geochemical data for mineral exploration
  • Indicator mineral and till geochemical signatures of the Broken Hammer Cu–Ni–PGE–Au deposit, North Range, Sudbury Structure, Ontario, Canada
  • Geochemical signature of earthquake-induced surface flooding by mineralized groundwater over the buried Atlántida deposit, northern Chile
  • Refining fine fraction soil extraction methods and analysis for mineral exploration
  • An improved method for assessing the degree of geochemical similarity (DOGS2) between samples from multi-element geochemical datasets
More...

Geochemistry: Exploration, Environment, Analysis

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

 

AEG logo

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
1467-7873
Online ISSN 
2041-4943

Copyright © 2021 AAG/Geological Society of London